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ABSTRACT:  Wavetable synthesis is both simple and straightforward in implementation and
sophisticated and subtle in optimization.  For the case of quasi-periodic musical tones, wavetable
synthesis can be as compact in data storage requirements and as general as additive synthesis but
requires much less real-time computation.  This paper shows this equivalence, explores some
suboptimal methods of extracting wavetable data from a recorded tone, and proposes a perceptually
relevant error metric and constraint when attempting to reduce the amount of stored wavetable data.

0 INTRODUCTION

Wavetable music synthesis (not to be confused with common PCM sample buffer playback) is

similar to simple digital sine wave generation [1] [2] but extended at least two ways.  First, the

waveform lookup table contains samples for not just a single period of a sine function but for

a single period of a more general waveshape.  Second, a mechanism exists for dynamically

changing the waveshape as the musical note evolves, thus generating a quasi-periodic function

in time.

This mechanism can take on a few different forms, probably the simplest being linear

crossfading from one wavetable to the next sequentially.  More sophisticated methods are

proposed by a few authors (recently Horner, et al. [3] [4]) such as mixing a set of well chosen

basis wavetables each with their corresponding envelope function as in Fig. 1.  The simple

linear crossfading method can be thought of as a subclass of the more general basis mixing

method where the envelopes are overlapping triangular pulse functions.  In that case, only

two wavetables are being mixed at any one instance of time as indicated in Fig. 2.  In any case,

the amount of data being stored and used for this synthesis method is far less than just the

PCM sample file of the note.  This is because wavetable synthesis takes advantage of the quasi-

periodic nature of the waveform to remove redundancies and to reduce the data set.



- 2 -

Wavetable synthesis is well suited for synthesizing quasi-periodic musical tones because

wavetable synthesis can be as compact in data storage requirements and as general as additive

synthesis but requires much less real-time computation.  This is because it precomputes the

inverse Discrete Fourier Transform (DFT) of the waveform spectrum before playback rather

than computing the inverse DFT in real-time which is essentially what additive synthesis does

when summing the outputs of many sine-wave oscillators.  With waveform tables

precomputed, real-time synthesis is reasonably simple to implement.  That being the case, it

seems odd that there are not many commercial examples of wavetable synthesizers

implemented.
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Figure 1  Arbitrary Wavetable Mixing
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1 WAVETABLE MECHANICS

As mentioned above, the first ingredient in wavetable synthesis is a static waveform generator

that uses a circular table of sequential waveform values, a phase accumulator for address

generation, and some means of interpolation between neighboring wavetable samples

because the address generated by the phase accumulator will not generally fall exactly on a

wavetable midsample [1] [2].  Fig. 3 illustrates the waveform generator.  Two issues

concerning wavetable size, K , are the modulo arithmetic used in the circular address

generator (usually indicating K  being a power of 2) and the interpolation mechanism.  If

linear interpolation (or worse yet, drop-sample interpolation) is used, a larger wavetable is

required to restrain interpolation error than if a more legitimate method of fractional sample

interpolation [5] [6], such as that used in sample rate conversion, is being used.  However if,

because of limited real-time computational speed, a simpler interpolation method is to be

used, a smaller wavetable that is archived and inactive can be expanded into larger wavetable,

using higher quality interpolation, when it is loaded and made active.
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Figure 2   Sequential Crossfading of Wavetables
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The other ingredient for wavetable synthesis is a mechanism to dynamically change the

waveform as the musical note proceeds in time.  The method described by Horner, et al. [3] [4]

that involves mixing a finite set of static and phase-locked wavetables, each scaled by

individual envelope functions, appears to be conceptually the most general.  It is shown in

Fig. 1.  At least one commercial product implements this method in hardware.  The Sequential

Circuits Prophet VS vector synthesizer which has four wavetables and envelopes which are

derived from a nonstationary (or time varying), two dimensional vector.  The remaining

tasks, to both design the most appropriate set of wavetables (as well as selecting and

minimizing the number of static wavetables) and to determine their envelope functions, are

discussed by Horner.  Two particular subclasses of this general wavetable mixing might be

noted:

One is the case where each wavetable is an integer number of cycles (a harmonic) of sine and

cosine functions up to a finite number of wavetables (and harmonics).  Since the sine and

cosine wave of the same frequency can be mixed to result in a sine wave of that frequency and

any arbitrary amplitude and phase, this method is simply equivalent to sinusoidal additive

synthesis.  It is very general (if the wavetables are phase locked, the result will still be quasi-

periodic), but requires many wavetables (twice the number of the highest harmonic) that must

all be scaled and mixed in real time thus removing any computational advantage in efficiency

that wavetable synthesis promises.

The other subclass is that of crossfading from one wavetable to the next (called

“wavestacking” in [7]).  In this case, the envelope functions are overlapping in such a way that

no more than two are non-zero at any one instance of time.  This means that, although there

may be many wavetables to proceed through (memory is cheap), only two are mixed at any

one time.  This is computationally inexpensive and easy to conceptualize especially if linear
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Figure 3  Phase Accumulator  Wavetable Oscillator
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crossfading is used.  In this case, the envelope functions are overlapping triangular pulse

functions as shown in Fig. 2.

It is reasonably easy to show how a set of sequential wavetables can be extracted directly from

a quasi-periodic input note without having to go into the frequency domain.  Some of the

same principles used in pitch-synchronous short time Fourier analysis (STFT) stopping short of

performing any Fourier Transform are used to do this.

The first step is determining the pitch or fundamental frequency or period of the quasi-

periodic input at a given time in the note where a wavetable is to be extracted.  Many papers

([8] - [11] are a few) and a few patents [12] exist for the problem of estimating pitch for difficult

signals, but for the case of nearly periodic inputs, simple autocorrelation type of methods

work fine.  By evaluating the average magnitude (or magnitude squared) difference function

(AMDF) Eq. (1) below as shown in Fig. 4, and correctly picking minima of the AMDF, one can

safely infer the period length, τ , to a precision of fraction of a unit sample time and thus the
fundamental frequency, f0 , in the vicinity of a given time, t0 .

γ t0
δ( ) ≡  x t + δ

2( ) − x t − δ
2( ) 2

w t − t0( )dt
−∞

∞

∫ (1)

γ t0
τ t0( )( ) = min

∆<δ
γ t0

δ( ){ }
     where  ′ γ t0

∆( ) = 0

     and   ′ γ t0
δ( ) > 0     for    0 < δ < ∆

where w t − t0( ) ≥ 0  is a window function centered at t0  and width wider than any anticipated

period τ .  τ  has an implied dependence on t0  and is sometimes abbreviated from τ t0( ) .  In

the example of Fig. 4, ∆  is about 65 sample units (at the first local maximum) and a period τ
of around 335 samples would be inferred since γ τ( )  is the global minimum value of the

AMDF for any lag greater than ∆ .  Interpolation around the global minimum would be

employed to compute a value of τ  to a precision of a fraction of a sample.
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The second step is to periodically extend the quasi-periodic input from t0  to infinity.  This

could be done by simply hacking off all of the input except for one period centered at t0
(functionally equivalent to applying a rectangular window shown in Fig. 5) and then

periodically repeating the one cycle in both directions of time, ad infinitum.  Of course, this

would introduce a discontinuity at each splice unless the input was perfectly periodic.  To avoid

this, one can use a window that more gracefully truncates the input outside of the period in
the t0  neighborhood.  This window must have a complimentary fade-in and fade-out

characteristic as discussed in [13].  The result is a single windowed period or wavelet defined as

ˆ x t 0
t( ) ≡ x t( )wn

t −t 0

τ t0( )( )
where wn β( )  is a normalized, complimentary window function such that
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wn −β( ) = wn β( )
wn 0( ) = 1

wn β( ) = 0                      for   β ≥1

wn β −1( ) + wn β( ) = 1    for   0 ≤ β ≤1

.

Two suitable candidates for complimentary normalized windows are:

wn β( ) =
1
2 1 + cos πβ( )( )     β <1

        0                  β ≥1

 
 
 

                             Hann window                     

wn β( ) =
1
2 1 + 9

8 cos πβ( ) − 1
8 cos 3πβ( )( )    β < 1

                  0                             β ≥ 1

 
  

  
     “Flattened Hann” window

The periodically extended waveform is constructed by summing together an infinite number
of copies of the wavelet ˆ x t0

t( ) , all equally spaced by the period τ t0( ) .

xt 0
t( ) ≡ ˆ x t0

t − mτ t0( )( )
m =−∞

∞

∑ (2)

Clearly xt0
t( )  is periodic with period τ t0( ) .  Using a complimentary (e.g. a Hann window or

the kind of “flattened Hann” window suggested in [13]) and an appropriately time-scaled

window of exactly one period half-amplitude length (the non-zero length is two periods long),

one can see that the periodically extended waveform in Fig. 5 is continuous everywhere and
matches the input exactly at time t0 , that is

xt 0
t0( ) = ˆ x t 0

t0( ) = x t0( ) , (3)

and also very closely matches the input in the vicinity of t0 .  This simple but very important

fact has a way of phase-locking the periodically extended waveforms as t0  is swept from the

beginning of the note to the end.  This is important to insure phase-locking of adjacent

wavetables.  If adjacent wavetables which have otherwise similar appearance, but are not

phase-locked, are crossfaded from one to the next, an unintended null will occur when the

crossfade is half complete.
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To rigorously of phase-align each wavetable might be more abstruse than it would first

appear for quasi-periodic tones with nonstationary period or pitch.  First the fundamental

frequency f0 t0( )  at time t0  of the quasi-periodic tone is defined to be the reciprocal of the

period τ t0( )  at the same time.

t0

+

=

Figure 5   Period Extension of  Quasi-Periodic Waveform
using Rectangular Window (top) and
“Flattened Hann” Window (bottom)
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f0 t0( ) ≡ 1
τ t0( )

If the wavetable phase at t = 0  is arbitrarily defined to be zero, then the (unwrapped) phase

at time t = t0  is

θ t0( ) = 2π f0 u( )du
0

t 0

∫

and θ t0( ) 2π  is the precise number of cycles or periods that have elapsed from t = 0  to

t = t0 .  To back up in time to precisely zero phase would be to back up θ t0( ) 2π  periods or

θ t0( ) 2π( )τ t0( )  in time.

Then in the final step, the wavetable (containing one cycle of the representative waveform of
the input in the vicinity of t0 ) is extracted from the periodic extension by resampling K  points

from t = t0 − θ t0( ) 2π( )τ  to t = t0 − θ t0( ) 2π( )τ + K −1
K τ  using normal sampling (or

resampling) techniques [5] [6].

xt 0
k[ ] ≡ xt 0

t0 +
k

K
− f0 u( )du

0

t0

∫
 

 
  

 

 
  τ

 

 
 
 

 

 
 
         0 ≤ k ≤ K −1

= ˆ x t 0
t0 +

k

K
− f0 u( )du

0

t0

∫
 

 
  

 

 
  τ − mτ

 

 
 
 

 

 
 
 

m=−∞

∞

∑

= x t0 + k
K

− f0 u( )du
0

t0

∫ − m
 

 
 
 

 

 
 
 τ

 

 
 
 

 

 
 
 

m=−∞

∞

∑ ⋅wn

k
K

− f0 u( )du
0

t0

∫ − m
 

 
 
 

 

 
 
 

There are only two terms of the summation in which the window wn ⋅( )  is nonzero.

−1 ≤  
k

K
− f0 u( )du

0

t 0

∫ − m <  +1
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k

K
− f0 u( )du

0

t 0

∫ −1 <  m ≤  
k

K
− f0 u( )du

0

t 0

∫ +1

m = floor
k

K
− f0 u( )du

0

t 0

∫
 

 
  

 

 
   ,  floor

k

K
− f0 u( )du

0

t 0

∫
 

 
  

 

 
  +1

xt 0
k[ ] = x t0 + βτ( )wn β( ) +  x t0 + β −1( )τ( )wn β − 1( ) (4)

where
β ≡ k

K
− f0 u( )du

0

t 0

∫ − floor
k

K
− f0 u( )du

0

t 0

∫
 

 
  

 

 
  = fract

k

K
− f0 u( )du

0

t 0

∫
 

 
  

 

 
  

fract u( ) ≡ u − floor u( )  ,        0 ≤ fract u( ) < 1

The floor ⋅( )  function maps the argument to the largest integer no greater than the argument.

Eq. (4) defines explicitly how the discrete wavetable values are extracted from the input signal.

Here the notation x k[ ] is adopted for discrete functions of time (such as wavetable points)

whereas x t( )  is the convention for continuous time functions.  However, in this paper, the

subscript t0  of either xt 0
k[ ]  or xt 0

t( )  is a continuous value of time.

Perfect bandlimited reconstruction of the periodic extension, xt 0
t( ) , from the extracted

wavetable data, xt 0
k[ ] , (assuming K  is even) would be accomplished from Eq. (5).

xt 0
t + t0 − τ f0 u( )du

0

t0

∫
 

 
  

 

 
  = xt 0

k[ ]
sin Kπ

τ t − k
K τ( )( )

K tan π
τ t − k

K τ( )( )k = 0

K −1

∑  (5)

However, it should be noted here that the reconstruction of xt0
t( )  from the wavetable points

should not, in practical resynthesis, require all K  values of xt0
k[ ] to be summed as indicated

above or any computational savings offered by using wavetable synthesis would be lost.  A

smaller number of the wavetable points (say, four to eight) in the neighborhood of

k = floor K
t
τ

 
  

 
  

 
  

 
  mod K  would suffice if the form 

sin Kπ ⋅( )
K tan π ⋅( )  function in Eq. (5) were

replaced by a properly windowed 
sin Kπ ⋅( )

Kπ ⋅  or sinc K ⋅( ) .   If K  is large enough (say 2048),

linear interpolation may well suffice in lieu of the perfect reconstruction of Eq. (5).
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The number of wavetable points necessary for proper sampling, K , is discussed in the
following section.  As t0  moves slowly from beginning to end, a given point, xt0

k[ ], of the

wavetable will change value slowly and will not change at all if the input is precisely periodic.

2 EQUIVALENCE TO HARMONIC ADDITIVE SYNTHESIS

A periodic function of time with period τ  has, by definition, the following property:

x t + τ( ) = x t( ),       − ∞ < t < ∞

This periodic function can also be written as a Fourier Series written as follows using any of

the following three different forms.

x(t) = a0

2
+ an cos 2πnf0t( ) − bn sin 2πnf0t( )

n =1

∞

∑

= c0 + rn cos 2πnf0t + φn( )
n=1

∞

∑

= cne
j2πnf0t

n =−∞

∞

∑

where c− n = cn
∗

an = 2 Re cn( )      bn = 2 Im cn( )
rn = 2 cn            φn = arg cn( )

and cn = 1
τ

x t( )e− j 2πnf0tdt
u

u+τ

∫         f0 ≡ 1
τ

The fourier coefficients, for a completely periodic function, are constant as above.  For a quasi-

periodic function, the periodicity property is only approximately true,
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x t + τ t( )( ) ≈ x(t)

     ( τ t( ) is the period around time  t )

and the fourier coefficients and period (or fundamental frequency) are not constant but slowly

changing functions of time.

x(t) = c0 t( ) + rn t( )cos 2πn f0 u( )du
0

t

∫ + φn t( )
 

 
  

 

 
  

n=1

∞

∑

= cn t( )e
j 2πn f0 u( )du

0

t

∫

n =−∞

∞

∑

(6)

where c− n t( ) = cn
∗ t( )

rn t( ) = 2 cn t( )        φn t( ) = arg cn t( )( )
cn t( ) = 1

2 rn t( )e jφn t( )      for  n > 0

To obtain the values of the time variant but bandlimited Fourier “coefficients” at some time
t0 , one would periodically extend the input x(t)  from t0  outward as described in the previous

section and then obtain fourier coefficients from that periodic extension.  The periodic
extension must hold the fourier coefficients constant at their values at time t0 , the

fundamental frequency constant at f0 t0( ) , and must satisfy Eq. (3).  The fourier coefficients in

Eq. (8) are used to construct the periodic extension function of Eq. (2).

xt 0
t( ) ≡ ˆ x t0

t − mτ t0( )( )
m =−∞

∞

∑

= c0 t0( ) + rn t0( )cos 2πn f u( )du
0

t0

∫ + f t0( )du
t 0

t

∫
 

 
 
 

 

 
 
 + φn t0( )

 

 
 
 

 

 
 
 

n=1

∞

∑

= c0 t0( ) + rn t0( )cos 2πnf t0( )t +  2πn f u( ) − f t0( )( )du
0

t0

∫ + φn t0( )
 

 
 
 

 

 
 
 

n=1

∞

∑

= cn t0( )e
j 2πn f u( )− f t 0( )( )du

0

t0
∫

e j 2πnf t0( ) t

n=−∞

∞

∑

(7)

where
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cn t0( )e
j 2πn f u( )− f t0( )( )du

0

t0
∫

= 1

τ t0( )
x t0

t( )e
− j 2πn

t

τ t0( )dt
u

u+ τ t0( )

∫        − ∞ < u < ∞

= 1

τ t0( )
xt 0

t + t0( )e
− j 2πn

t + t0
τ t0( ) dt

0

τ t0( )

∫

= f0 t0( ) xt 0
t + t0( )e− j 2πnf0 t 0( ) t +t 0( )dt

0

τ t0( )

∫

= f0 t0( )e− j 2πnf0 t 0( )t 0 x t0
t + t0( )e− j 2πnf0 t0( ) t

dt
0

τ t0( )

∫

= f0 t0( )e− j 2πnf0 t 0( )t 0 ˆ x t 0
t + t0 − τ t0( )( ) + ˆ x t 0

t + t0( )[ ]e− j 2πnf0 t0( ) t
dt

0

τ t0( )

∫

cn t0( ) = f0 t0( )e
− j 2πn f u( )du

0

t0

∫
x t + t0 − τ t0( )( )e− j 2πnf0 t0( ) tdt

0

τ t0( )

∫
 

 
 
 

             + x t + t0( ) − x t + t0 −τ t0( )( )[ ]wn
t

τ t 0( )( )e− j 2πnf0 t 0( ) t
dt

0

τ t 0( )

∫
 

 
 
 

(8)

The last equation is just to show that if x t( )  is truly periodic with period τ , then the second

integral is zero and the fourier coefficients are no different from what we expect for a periodic
x t( ) .  Also for quasi-periodic input, the fourier coefficients for a smoothly windowed wave

extension differ from that of a rectangularly windowed extension by only the contribution of
the second integral.  The dependency of the fourier coefficients on time t0  simply reflect that

the periodic function on which they are derived depends on t0 .  Given x t( ) , and Eqs. (6) and

(8), the amplitude and phase envelopes, rn t( )  and φn t( ) , can be determined for each

harmonic.  And given τ t( ) , determined from a pitch detection algorithm similar to Eq. (1) the

instantaneous frequency f0 t( )  can be computed.

Musical Additive Synthesis amends Eq. (6) in a couple of ways.  First, it eliminates the DC term

and all terms above the N th harmonic reflecting the bandlimited nature of the

analyzed/synthesized tone.
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x (t ) = r n t( ) cos 2πn f 0 u( )du
0

t

∫ + φn t( )
 

 
  

 

 
  

n=1

N

∑

      = cn t( )e
j2πn f 0 u( )du

0

t

∫

n=− N

N

∑
(9)

where

c− n t( ) = cn
∗ t( )

rn t( ) = 2 cn t( )        φn t( ) = arg cn t( )( )
cn t( ) = 1

2 rn t( )e jφn t( )      for  n > 0

c0 t( ) = 0

Secondly, the time variant phase term and the instantaneous fundamental frequency are

collected together as a single nonstationary harmonic frequency expression below.

2πn f0 u( )du
0

t

∫  +  φn t( ) =  2π fn u( )du
0

t

∫  +  φn 0( )

where fn t( ) ≡ nf0 t( ) + 1
2π ′ φ n t( )

x t( ) = rn t( )cos 2π fn u( )du
0

t

∫ + φn 0( )
 

 
  

 

 
  

n=1

N

∑ (10)

Eq. (10) can, for Additive Synthesis, be generalized further by removing any restriction that
the instantaneous frequency of the n th harmonic or overtone, fn t( ), not have to be close to

n  times the fundamental, however, the result (if that harmonic’s amplitude was significant)

would likely be less periodic or not quasi-periodic at all making this tone not suitable for

normal wavetable synthesis.  If Eq. (10) were to be converted back to the constant multiple

fundamental frequency and time varying phase form as in Eq. (6), it would be apparent that
the phase term, φn t( ) , would have to vary rapidly to detune the overtone from its

“harmonic” frequency nf 0 t( )  making the fourier coefficients cn t( )  no longer slowly varying

in time.  Thus we will restrict all overtones to be very nearly harmonic, that is with

instantaneous frequencies nearly an integer multiple of some common fundamental
frequency, f0 t( ) .
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If the tone is expressed in Additive Synthesis form, probably the simplest way to periodically
extend the tone from time t0  is to simply hold the slowly time-variant fundamental frequency

and fourier coefficients constant at their values at time t0  as is done in Eq. (7).

xt 0
t( ) = rn t0( ) cos 2πn f u( )du

0

t0

∫ + f t0( )du
t0

t

∫
 

 
 
 

 

 
 
 +φn t0( )

 

 
 
 

 

 
 
 

n=1

N

∑

= rn t0( ) cos 2πnf t0( )t +  2πn f u( ) − f t0( )( )du
0

t 0

∫ +φn t0( )
 

 
  

 

 
  

n=1

N

∑

= rn t0( ) cos 2πnf t0( ) t − 1− f u( )
f t0( )( )du

0

t 0

∫
 

 
  

 

 
  + φn t0( )

 

 
 
 

 

 
 
 

n=1

N

∑

Then the wavetable points extracted out of the periodic extension from time t0  of input x t( )
expressed as Eq. (9) are

xt 0
k[ ] ≡ xt 0

t0 + k
K

− f0 u( )du
0

t0

∫
 

 
 
 

 

 
 
 τ t0( )

 

 
 
 

 

 
 
            0 ≤ k ≤ K −1

= xt 0

k

K
− f u( ) − f t0( )( )du

0

t0

∫
 

 
 
 

 

 
 
 τ t0( )

 

 
 
 

 

 
 
 

= rn t0( )cos 2π nk

K
+φn t0( )( )

n=1

N

∑

= cn t0( )e
j 2π nk

K

n =− N

N

∑

(11)

Eq. (11) is a fundamental mapping of additive synthesis specification data (usually expressed as
each harmonic’s amplitude rn t( )  and frequency fn t( ) or phase φn t( ) ) to wavetable synthesis

data xt k[ ] .  In order for the Nyquist sampling theorem requirement to be satisfied, the

number of wavetable points K  must be larger than twice the index of the highest harmonic or

2 N .  This means, at least theoretically, a 128 point wavetable can accurately represent a

periodic function having arbitrarily defined magnitude and phase for each harmonic up to the

63rd.  In practice, for the purpose of reducing spurious aliasing during interpolation, it might

seem wise to limit the index of the highest nonzero harmonic ( N ) to something much less
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than 
K

2 .  For purposes of both simple modulo address arithmetic and convenient radix-2 DFT

or FFT, it seems logical to choose K  to be an integer power of two.

Another little tidbit to point out here is, in the limiting case, Eq. (11) maps 2 N  continuous and
bandlimited time functions ( N  amplitude functions, rn t( ) , and N  phase functions, φn t( ) )

governing frequency domain behavior into nearly the same number ( K = 2 N + 2) of
continuous and bandlimited time functions, xt k[ ] , governing time domain behavior.  The

difference of enumerating two functions is due to the implicit specification that the DC and

Nyquist harmonics have zero amplitude adding two more functions governing frequency

domain behavior.

3 ANY WAY YOU SLICE IT

 Eq. (11) can be expressed in such a way that the wavetable values xt k[ ]  at some time t  are the

inverse Discrete Fourier Transform of some data set Xt n[ ] .

xt k[ ] = rn t( )cos 2π nk

K
+φn t( )( )

n =1

N

∑

= cn t( ) e
j2π nk

K

n=−N

N

∑

= 1
K

X t n[ ] e
j2π

nk

K

n=0

K −1

∑                 
0 ≤ k ≤ K −1

N < K
2

(12)

where

Xt n[ ] =
Kcn t( ) = K

2 rn t( )e jφ n t( )           for  1 ≤ n ≤ N          

Kcn −K t( ) = K
2 rK− n t( )e− jφK −n t( )    for  K − N ≤ n ≤ K −1

         0                               otherwise              

 

 
  

 
 
 
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The use of the inverse DFT representation in Eq. (12) has one immediately useful consequence

of yielding an inverse mapping to Eq. (11):

rn t( ) = 2
K  X t n[ ] = 2

K X t n[ ]X t K − n[ ]

φn t( ) = arg X t n[ ]( ) = 1
2 j log

X t n[ ]
Xt K − n[ ]

 

 
  

 

 
  

(13)

where
Xt n[ ] = xt k[ ]e

− j 2π
nk

K

k = 0

K −1

∑

This tells us directly, given a set of wavetable data xt k[ ]  at a given time, what the

instantaneous magnitude rn t( )  and phase φn t( )  (or frequency, if we so choose) of each

harmonic is.  This will be put to use in the next section.

harmonic number
1 5 17

t

amplitude

Figure 6   Family of Harmonic Amplitude Magnitude Curves
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It is common to plot the family of curves for all of the harmonic amplitudes rn t( )  as shown in

Fig. 6.  Plots of harmonic phases φn t( )  can also be drawn but it is less common to do so.

What might be illustrative would be plotting the complex harmonic amplitude function Xt n[ ]
versus time as a three dimensional trajectory as shown in Fig. 7 for one harmonic.  At some
time t  the distance Xt n[ ] is from the zero line is K

2 rn t( )  and the angle against the real plane

is φn t( )  if  1 ≤ n ≤ N .  Another useful property is that at any time t , all of the complex

amplitude curves Xt n[ ] are (varied) linear combinations of the wavetable curves xt k[ ] .  This

fact will also find service in the next section.

By holding n  constant and “slicing” the curve family in Fig. 6 along rn t( ) , one can readily

observe in that cross-section, the envelope of the magnitude of the n th harmonic of the tone

versus time.  On the other hand, by holding t  constant and “slicing” the family of curves

perpendicular to the t  axis, one can observe in that cross-section, the instantaneous line

spectrum magnitude of the quasi-periodic tone at time t .

In the same manner of plotting the harmonic amplitude family of envelopes in Fig. 6, we can
plot the family of envelopes of the time-variant wavetable points xt k[ ]  versus time as shown

in Fig. 8.  Again, by holding k  constant and “slicing” the curve family in Fig. 8 along xt k[ ] ,

one can readily observe in that cross-section, the envelope of the value of the k th wavetable

point versus time.  And again, by holding t  constant and “slicing” the family of curves

perpendicular to the t  axis, one can observe in that cross-section, the instantaneous, phase

aligned, waveshape of the quasi-periodic tone at time t  .

t

Im

Re

Figure 7   Complex Harmonic Amplitude  (1st Harmonic)
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It should be restated here that, at a given time t  the line spectrum cross-section of Fig. 6 and

the waveshape cross-section of Fig. 8 are related to each other by the Discrete Fourier

Transform and its inverse.

4 DATA REDUCTION, APPROXIMATION, AND ERROR

It has been shown above that, given a quasi-periodic piece of sound and the means to measure

pitch or period at any given neighborhood of time, the characteristic waveform at that

neighborhood of time can be extracted.  These neighborhoods could be spaced very close in

time (say 1 ms) to each other resulting in wavetables that are very similar to their adjacent

wavetables and, for real-time computation, this would have no additional cost since, still, only

two wavetables are being crossfaded at any one time.  There would be, however, a cost to

expect in memory requirements: If 128 point wavetables were extracted every millisecond (44

or 48 samples), we would be increasing memory requirements at least 167% from the raw

recorded PCM sample of the note.  This does not take any advantage of the redundancy

resulting from the near periodicity of the tone.  The underlying reason for this redundancy is

0 16
32

48
64

80 96 112

wavetable point number

amplitude

t

Figure 8   Family of Envelopes of Wavetable Points
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that information is (or, more precisely data storage resources are) wasted on many

wavetables that are so nearly equal to their neighbors that some wavetables can and should

be eliminated.  A frequency domain perspective of this can be seen by performing a Fourier
Transform on Eq. (6) (assume, for illustrative purposes that the fundamental frequency f0 t( )
is constant).

x(t) = cn t( )e j2πnf0t

n=−∞

∞

∑

X f( ) ≡ x t( ){ } = cn t( )e j 2πnf0 t

n =−∞

∞

∑
 
 
 
  

 
 
 
  = Cn f − nf0( )

n=−∞

∞

∑

Cn f( ) ≡ cn t( ){ }

If x(t)  is nearly periodic, meaning that cn t( )  and each wavetable point is very slowly moving

in time and that each Cn f( )  is bandlimited to probably much less than f0 , then there is a lot

of empty space, between the harmonic “spikes” Cn f( ) , in the spectrum X f( )  that need not

have any information (or data storage) wasted on it.  If x t( )  was not at all periodic, adjacent

wavetables would not be similar (no redundancy) and the spectrum X f( )  would have

nonzero data throughout its frequency range.

Returning to the proposition of extracting a wavetable every millisecond (or some other small
unit of time), it is clear that this essentially samples the envelope functions xt k[ ]  every

millisecond and consequently the frequency domain envelopes, Xt n[ ], cn t( ) , rn t( ) , and

φn t( )  at the same rate.  If the input x t( )  is sufficiently quasi-periodic, all of these envelopes

should be bandlimited to far less than what would required for this sampling rate (in this case

500 Hz) hence more information is present than necessary.

One can readily imagine many different approaches to reducing the amount of this

information.  However proposing an optimal method, or even dealing with any more

approaches than the very simplest is beyond the scope of this paper.  One can refer to Horner,

et al. [3] [4] [14], Serra, et al. [15], and Sandell and Martens [16], for some novel work in this.

Nonetheless, there are a few common considerations regarding any method of data

representation and reduction for wavetable synthesis of quasi-periodic tones that are

observed here, perhaps in the hope that meaningful and common goals and metrics of

performance can be used for all methods.  The simplistic method of data reduction given here

as an example is that of simply eliminating adjacent wavetables (that were extracted, in the

beginning, far more often than necessary), keeping a few for “endpoints”, until the results
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become nearly discernibly different from the original tone (assuming linearly crossfading

between the endpoint wavetables that remain).

What makes the result of any data reduction operation “discernible” or “not quite discernible”

is a perceptual issue (or specifically a psychoacoustical issue if it is audio data).  All that’s

involved with that broad issue is also beyond the scope of this paper yet a very general and

hopefully perceptually relevant error metric is proposed here:

Given a target quasi-periodic tone x t( )  that can be represented in the Additive

Synthesis form of Eqs. (9) and (10) and the data reduced synthesized tone ˜ x t( )
that is represented in an identical way in Eqs. (9) and (10),

• The amplitude of each synthesized harmonic must be constrained to deviate less

than a given and possibly time-variant error bound in dB from the target:

 log ˜ r n t( )( ) − log rn t( )( ) < εn t( ) (14)

• Although absolute phase of each harmonic may not be perceptually salient, the

instantaneous frequency (and thus the rate of change of phase) is salient (the

importance of this seems to have been devalued in Horner, et al. [3] [4] and

Serra, et al. [15]) and must also be constrained to deviate less than a given and

possibly time-variant error bound in Hz from the target:

2π  ˜ f n t( ) − fn t( ) =  ˜ ′ φ n t( ) − ′ φ n t( ) < ξn t( ) (15)

The equality in Eq. (15) can be supported with Eq. (10) and by noting that the given input (or

given target tone described by Eqs. (9) or (10)) refer to the same instantaneous fundamental
frequency f0 t( ) .  If an overall error metric is desired (usually for the purpose of minimizing,

given a fixed number of wavetables), summing (for 1 ≤ n ≤ N ) the difference expressions in
Eqs. (14) and (15), weighted by the reciprocals of ε n t( )  or ξn t( )  (possibly raised to a high

power to de-emphasize any error below the constraints), might be useful but is not used here.

The error constraints of Eqs. (14) and (15) are more easily visualized by referring to the

complex harmonic amplitude trajectories shown in Figs. 10 and 12 and noting that
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r t( )e− εn t( )  <    ˜ r t( )  <   r t( )e+ε n t( )

 Xt n[ ]  e−ε n t( ) <   ˜ X t n[ ]  <   Xt n[ ]  e+ε n t( ) (14a)

and

′ φ n t( ) − ξn t( )  <          ′ ˜ φ n t( )         <   ′ φ n t( ) + ξn t( )
φn t( ) − φn ti( )

t − ti

− ξn ti( )  <  
 ˜ φ n t( ) − ˜ φ n t i( )

t − ti

  <   
φn t( ) − φn ti( )

t − ti

+ξn ti( ) 

φn t( ) + ˜ φ n t i( ) − φn t i( )[ ] −ξn ti( ) t − ti( )

                  <   ˜ φ n t( )  <   φn t( ) + ˜ φ n ti( ) −φn ti( )[ ] + ξn t i( ) t − ti( )

arg X t n[ ]( ) + arg ˜ X ti n[ ]( ) −arg Xti
n[ ]( )[ ] − ξn ti( ) t − t i( )

                  <   arg ˜ X t n[ ]( )
                        <   arg X t n[ ]( ) + arg ˜ X ti

n[ ]( ) − arg Xti
n[ ]( )[ ] + ξn ti( ) t − t i( )

(15a)

for small t − t i  .

˜ x t( )  is the synthesized output from a reduced data set and can be defined from some

hypothetical harmonic amplitude and phase or frequency envelopes, ˜ r n t( ) , ˜ φ n t( ) , ˜ f n t( ) ,

using Eqs. (9) or (10).  If ˜ x t( )  is computed by linearly crossfading between two “endpoint”

wavetables of the original input x t( )  (at times ti  and ti+1), then the envelope functions for the

synthesized wavetable points at times between ti  and ti+1  are these linear functions:

˜ x t k[ ] = x ti
k[ ]+

t − ti

t i+1 − ti

x ti+1
k[ ] − x ti

k[ ]( )           ti ≤ t ≤ ti +1 (16)

Because of the linear mapping of the DFT in Eq. (13) is it clear that the same applies to the

complex harmonic envelopes:
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˜ X t n[ ] = X ti
n[ ] +

t − ti

ti +1 − t i

Xti+1
n[ ] − Xt i

n[ ]( )         ti ≤ t ≤ ti +1 (17)

or

˜ c n t( ) = 1
2

˜ r n t( )e j ˜ φ n t( ) = 1
K

˜ X t n[ ]                 for  1≤ n ≤ N

= cn ti( ) + t − ti

ti +1 − ti

cn t i+1( ) − cn ti( )( )          ti ≤ t ≤ t i+1

The complex harmonic envelopes ˜ X t n[ ] or ˜ c n t( )  of the synthesized tone are then connected

straight lines as shown in Fig. 9.

For a fixed k, it would seem unproductive to attempt to fit the piecewise linear curve ˜ x t k[ ]
directly to the given curve xt k[ ]  since there is no direct perceptual coupling of the exact value

of ˜ x t k[ ]  and how we hear ˜ x t( ) .  But that is not so much the case with the complex harmonic

envelope curves ˜ c n t( )  or ˜ X t n[ ] since they are directly related to the amplitude and phase (or

frequency) of the n th harmonic of ˜ x t( ) .  Therefore fitting piecewise linear curves ˜ c n t( )  to the

cn t( )  envelopes originally derived from x t( )  is the strategy taken here.

t

Re

Im

Figure 9   Complex Harmonic Envelope 
and Piecewise Linear Approximation
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Now from a given quasi-periodic input x t( ) , the complex harmonic envelope functions Xt n[ ]
are readily determined as shown in the previous sections and if the breakpoint times (which
correspond with the “endpoint” wavetable times ti ) are known, the complex harmonic

envelope ˜ X t n[ ] and the salient properties ( ˜ r n t( ) , ˜ φ n t( ) , ˜ f n t( )  ) of it for the synthesized

output are known.  If the simple data reduction method of eliminating redundant adjacent

wavetables mentioned above is used, the following procedure for determining “endpoint”
wavetable times ti  could be performed:

1. Start with t = 0 , i = 0  and ti = t0 = 0 .

2. Advance t  by a small increment (such as 1 ms as suggested above) and

evaluate both Eqs. (14a) and (15a) for every harmonic index 1 ≤ n ≤ N .

3. Check to see if violation of either inequality (14a) and (15a) for any harmonic
index is impending for any time between ti  and t .  If no, repeat step 2.  If yes,

proceed to step 4.
4. Let   ti+1 = t ,   i ← i +1,   repeat procedure at step 2.

5 INTERPOLATION IN MULTIPLE DIMENSIONS

Because wavetable synthesis inherently “normalizes” frequency in its analysis (that is each

wavetable represents the data for exactly one period of a waveform), it is not difficult to

interpolate between two or more waveforms for different notes.  Interpolating between notes

of different instruments is not expected to be useful.  However interpolating between different

but relatively close pitches of the same instrument and interpolating between notes of the

same pitch with varying loudness, attack, or key velocity has had some limited but interesting

results.

The assumption made here, with no certain physical basis, is that it makes sense that the

wavetables of the two or more notes being interpolated be phase aligned as much as possible.

Since adjacent  wavetables of the same note are already phase aligned to each other (because

of the phase locking procedure of Section 1), what remains necessary is to phase align all of

one note’s wavetable against another given note’s wavetables with a single phase adjustment

or wavetable rotation.  Rotating all wavetables of a given note preserves the relative phase

coherency between adjacent wavetables of that note.
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Probably the simplest criterion to phase align one note’s wavetables, yt k[ ], against another’s,

xt k[ ] , is to maximize the time average cross-correlation of corresponding wavetables

extracted at the same times in the evolution of the note.

max
0≤ m < K

y ti
k + m( )mod K[ ]xti

k[ ]
k = 0

K −1

∑
i

∑
 
  
  

 
  
  

then redefine :     yt i
k[ ] ← y ti

k + m( )mod K[ ]
(18)

If wavetables are removed for data reduction as done in the previous section, this rotate-and-

align operation should be done first so that there exists, for each wavetable of a given note at
times ti , a corresponding wavetable of the other note(s) at the same times. K  should be quite

large (at least 2048) for the rotation of Eq. (18) to have sufficient resolution.

The methods of weighting and mixing different notes for interpolation is far from a settled

issue but a first guess could be simple polynomial interpolation between the corresponding

points of the different but corresponding wavetables.  That is, linear interpolation would be

used to change from one note definition to another, given only two notes.  Quadratic

interpolation would be used if three notes are used and so on.

Consider this example: given three recordings of the same pitch of the same instrument but at

different and increasing intensities or key velocities, mf , f , and ff .  Associate with these

three loudness levels the control parameters, 0 , 1, and 2 , respectively (the parameters do not
need to be equally spaced and normally would not be).  At time t0 , the three notes have
corresponding, phase aligned, wavetables, xmf ,t0

[k] , x f ,t0
[k] , x ff ,t0

[k]  and given a loudness

control parameter, α , the resulting wavetable would be defined as:

xt 0
k[ ] = α −1( ) α− 2( )

0 −1( ) 0− 2( ) xmf ,t0
k[ ] +  α − 0( ) α −2( )

1− 0( ) 1−2( ) x f ,t 0
k[ ] +  α −0( ) α −1( )

2 −0( ) 2−1( ) x ff ,t0
k[ ]

= y0, t0
k[ ]  +   α ⋅ y1,t 0

k[ ]  +   α 2 ⋅ y2, t 0
k[ ]

(19)

Eq. (19) uses Lagrange’s interpolation formula [17] and normally α  is approximately in the

range of the given control parameters (0 ≤ α ≤ 2 ).  Eq. (19) also shows two different

implementations, the lower equation probably being simpler to perform in real-time but
requiring the y~, t0

k[ ] wavetables to be precomputed from the x~,t0
k[ ] wavetables.  This
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method can also be applied in a similar manner, with varying results, to three notes at

different pitches of the same instrument.

6 CONCLUSIONS

Recapitulating, wavetable synthesis data (the wavetables themselves) can be extracted directly

from the time-domain waveform itself or computed from the additive synthesis

representation (or some other synthesis model) of a quasi-periodic musical tone.  In either

case, adjacent wavetables, in time or other parametric dimensions, should normally be phase

aligned as much as possible so that in mixing or crossfading, spurious nulls are avoided.  At

any given small neighborhood of time, the wavetable data and the additive synthesis data are

related to each other by way of the Discrete Fourier Transform.  As in additive synthesis, the

salient perceptual features of the waveform to preserve, when any data reduction is

performed, are the instantaneous amplitude and frequencies (to varying degrees of accuracy)

of each harmonic.  As noted in the introductory section, wavetable synthesis seems to be a

natural and comparatively inexpensive alternative to additive synthesis of quasi-periodic

tones.
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